SELF-DIRECTED LEARNING: TOWARD A COMPREHENSIVE MODEL

By D.R. GARRISON

D.R. GARRISON is Professor at University of Alberta. This article was accepted for publication under prior editorship.

ABSTRACT

Self-directed learning is a core theoretical construct distinguishing adult education as a field of study. Most of the concept's emphasis has been on the external control and management of learning tasks. In an attempt to expand the scope of self-directed learning, this paper presents a comprehensive theoretical model. The proposed model integrates self-management (contextual control), self-monitoring (cognitive responsibility), and motivational (entering and task) dimensions to reflect a meaningful and worthwhile approach to self-directed learning. Explicating the cognitive and motivational dimensions of self-directed learning is identified as an area requiring further research.

Self-directed learning is a central concept in the study and practice of adult education. While it has a rich history and is central to the field, the concept, nevertheless, carries considerable confusion and misunderstanding (Brockett & Hiemstra, 1991; Candy, 1991). Until recently, the overriding theme of self-directed learning has been the external management of the learning process. In this conception, the learner exercises a great deal of independence in deciding what is worthwhile to learn and how to approach the learning task, regardless of entering competencies and contextual contingencies. In this regard, Candy (1991) argued that the "ideology of autonomy" surrounding self-directed learning has restricted its conceptualization and created imbalances when implementing it in an educational setting.

As important as the construct is to adult education, little attention has been directed to the learning process itself—the cognitive and motivational dimensions of learning. Without this perspective, self-directed learning lacks the comprehensiveness of a foundational concept. To address these concerns, a model of self-directed learning is proposed which integrates external management (contextual control), internal monitoring (cognitive responsibility), and motivational (entering and task) issues associated with learning in an educational context. As such, self-directed learning is defined here as an approach where learners are motivated to assume personal responsibility and collaborative control of the cognitive (self-monitoring) and contextual (self-management) processes in constructing and confirming meaningful and worthwhile learning outcomes.

Self-directed learning is viewed from a "collaborative constructivist" perspective. A collaborative constructivist perspective of learning is intended to be positioned between the more extreme radical and social constructivist positions. A collaborative perspective has the individual taking responsibility for constructing meaning while including the participation of others in confirming worthwhile knowledge. Meaningfulness and worthwhileness reflect the cognitive and social perspectives of an educational experience. Therefore, meaning and knowledge are both personally and socially constructed. This balanced integration of cognitive and collaborative learning processes, therefore, defines learning outcomes as both personally meaningful and socially worthwhile. The integration and coordination of cognitive and social concerns is seen by Dewey (1969) to be the ultimate challenge in designing an educational experience.

It is this challenge of integrating the cognitive-motivational and social dimensions of self-directed learning in an educational setting that is the focus of this paper. My purpose here is to expand conceptual foundations by including contextual (management), cognitive (monitoring), and conative (motivational) dimensions. The need for a comprehensive model of self-directed learning is assessed in the next section.

The Concept of Self-Directed Learning
Self-directed learning may well be the most prominent and well researched topic in the field of adult education (Brockett & Hiemstra, 1991; Long & Redding, 1991). While the reasons for this are surely complex, one important reason has to be the intuitively appealing desire to be in control of deciding what to learn and how to learn it. It also fits with the desire and need felt by most adults to continue to learn. These innately human characteristics are inherent in the concept of **self-directed learning**. As Knowles (1975) stated, **self-directed learning** is not an educational fad, but a "basic human competence--the ability to learn on one's own" (p. 17).

The apparent need to "ream on one's own" has been a persistent theme in self-directed reaming. For this reason, it is not surprising to find that **self-directed learning** has its genesis in independent and informal adult reaming contexts (Tough, 1971). As such, writers have largely focused on external issues of control (Brookfield, 1986; Garrison, 1993). An important fuming point in conceptualizing the construct occurred with the recognition that it lacked a cognitive perspective (Mezirow, 1985). Mezirow suggested that a critical awareness of meaning and **self-knowledge** is a key dimension to **self-directedness**. Similarly, Brookfield (1985, 1986) argued that the full adult form of **self-directed** reaming is realized when external activities and internal reflective dimensions are fused.

Long (1989) identified three dimensions of **self-directed** reaming: the sociological, pedagogical, and psychological. Long contended that much of the discussion around **self-directed** reaming has focused on the sociological (independent task management) and pedagogical (application in educational contexts) issues. He expressed amazement at the fact that the psychological (cognitive) dimension had been generally ignored, stating that the "critical dimension in **self-directed learning** is not the sociological variable, nor is it the pedagogical factor. The main distinction is the psychological variable" (Long, 1989, p. 3).

While the social context for reaming has been and should remain a significant factor, the lack of a specific psychological or cognitive dimension has been somewhat ironic, considering the humanistic origins of the concept. Rogers (1969), for example, used the concept in terms of both a cognitive and affective perspective. For Rogers, **self-direction** was largely about taking responsibility for the internal cognitive and motivational aspects of **learning**. The emphasis was on cognitive freedom and the ultimate goal was to learn how to learn.

The phrase "**self-directed learning**" invokes both social and cognitive issues--that is, issues of "self-direction" and "**learning**," respectively. In adult education, however, most of the focus has been on self-direction (i.e., **self-management of learning** tasks). As such, the construct has been largely defined in terms of external control and facilitation, rather than internal cognitive processing and **learning**. Long's (1989) position was that, without the psychological or cognitive dimension, the focus is on teaching not **learning**. He argued that: "Pedagogical procedures whether imposed by a teacher or freely chosen by the learner remain pedagogical or 'teaching' activities. Hence we have other-teaching or perhaps **self-teaching** but not **self-learning**" (p. 5). This distinction between external control and internal cognitive responsibility is the basis for the **self-directed learning** framework and **model** presented here.

More recently, Brockett and Hiemstra (1991) have proposed an interesting framework by expanding the **self-directed learning** construct to include a personality disposition. Their framework is based on the "distinction between the process of **self-directed learning** and the notion of **self-direction** as a personality construct" (p. 23). The two dimensions in the framework correspond to transactional or instructional methods and learner personality characteristics. This distinction between process and personality evolved largely from the work of Oddi (1987), and lies at the heart of Brockett and Hiemstra's **model**.

While the latter **model** is clearly a positive development, the psychological dimension appears limited by the fact that it represents only a personality factor or disposition to be **self-directed**. In fact, it is suggested that personality factors, as defined by the Oddi Continuing **Learning** Inventory (Odd), 1986), may be better interpreted as motivational dispositions (which will be discussed). In their **model**, cognitive and metacognitive issues related to the process of **learning** are addressed only tangentially. While they believe that critical reflection is an important element of "learner self-direction," it is unclear how this is a personality characteristic. The challenge is to take a more comprehensive perspective and integrate cognitive and metacognitive processes in **self-directed learning**.
Hammond and Collins (1991) assumed a more comprehensive perspective by including critical awareness. They described a critical self-directed learning process that goes beyond "narrowly defined personal learning needs" to include a larger social and emancipatory perspective (i.e., critical awareness and social action). They advocated challenging reamer beliefs and assumptions largely through reflective activities. Considerable emphasis is given to the intellectual climate along with the social climate. While briefly describing a critical framework, much of their work is devoted to the critical practice of self-directed learning.

More recently, this author explored the links between self-directed learning and critical thinking (Garrison, 1992). In essence, this was an attempt to integrate external control and internal reaming responsibilities. Based on the recognition of self-directed reaming and critical thinking as two dominant constructs in adult education, it was suggested that they reflected complementary perspectives of the reaming process. Self-directed learning centered around the control of reaming activities, while critical thinking reflected the cognitive aspects of the learning process. Moreover, the critical thinking construct reflected the complex cognitive processes associated with constructing personal meaning and worthwhile knowledge developed through consensual understanding.

Meaningful and worthwhile reaming must view external task control and cognitive responsibility concerns as integral and reciprocal constructs. Self-direction that is simply focused on task control neglects the critical issues of setting goals that are relevant and meaningful, cognitive strategies, and opportunities to question accepted orthodoxies. An adult learner who is fully self-directed has moved beyond simple task control and has learned to think critically and construct meaning in ill-defined and complex content areas. To be theoretically useful, self-directed reaming must go beyond task control and include the process of accepting responsibility to construct meaning and to cognitively monitor the learning process itself (i.e., metacognitive awareness). Furthermore, motivational states should be included, given their mediating effect on both task management and cognitive monitoring.

A Comprehensive Model

The self-directed reaming model described here includes three overlapping dimensions: self-management (task control), self-monitoring (cognitive responsibility), and motivation (entering and task) (Figure 1). While each dimension is discussed separately, in practice, they are intimately connected. This creates special problems with ordering the discussion. It is very difficult to discuss one dimension without concurrently considering the others. However, the complexity of an integrated approach would defeat the goal of a parsimonious explication of each dimension. Therefore, since self-directed reaming has traditionally emphasized task management and external control, we begin with the more familiar concept of self-management, that is, the transactional (collaborative) control of external tasks and activities. This dimension encompasses the sociological and pedagogical issues that Long (1989) earlier identified.

Self-Management

Self-management is concerned with task control issues. It focuses on the social and behavioral implementation of learning intentions, that is, the external activities associated with the learning process. This dimension concerns the enactment of learning goals and the management of learning resources and support. Questions of goal management, learning methods, support, and outcomes are collaboratively and continuously assessed and negotiated. For example, learners should be provided with choices of how they wish to proactively carry out the learning process. Material resources should be available, approaches suggested, flexible pacing accommodated, and questioning and feedback provided when needed. In this way, self-management of the learning process will facilitate and energize meaningful and continuous learning.

The term "self-management" is used here to indicate an aspect of external task control specific to the management of learning activities, which are intimately linked with goal setting and metacognitive strategies. However, this is not a common term. The essence of the concept can be found in the self-regulated motivational literature (Corno, 1994; Pintrich & DeGroot, 1990). While, in practice, self-management cannot
be separated from cognitive (self-monitoring) and conative (motivation and volition) control strategies, it is intended to reflect the social setting (resource management) and what learners do during the learning process.

Consistent with a collaborative constructivist view of learning, the individual does not construct meaning in isolation from the shared world. This is particularly true of self-directed learning in an educational context. Increased learner control affects the transactional balance between teacher and learner. From an adult education perspective, Candy states "increasing learner-control demands a negotiated consensus between the parties involved" (1991, p. 243), that is, the control over management of learning tasks is realized in a collaborative relationship between teacher and learner. The teacher assumes considerable responsibility in determining and maintaining an appropriate dynamic balance of external control.

Self-management involves shaping the contextual conditions in the performance of goal-directed actions. While it is possible for some mature learners to rise above a learning context where they have little control, a collaborative learning environment where a learner's input can shape goals and activities is more conducive to constructing meaningful knowledge (Prawat, 1992; Resnick, 1991). In an educational context, self-management does not mean students are independent and isolated learners. Facilitators provide the support, direction and standards necessary for a successful educational outcome. Therefore, in what might seem a paradox, self-management of learning in an educational context is properly a collaborative experience.

Management control of learning activities depends upon a complex array of variables. However, in essence, external management dynamics (task control) are determined by balancing the factors of proficiency, resources, and interdependence (Garrison, 1993). Proficiency represents the abilities and skills of the facilitator and learner. Resources encompasses a range of support and assistance available in the educational setting. Finally, interdependence reflects institutional or subject norms and standards as well as learner integrity and choice. Sustained collaborative consideration of the many variables associated with these factors will help determine the appropriate degree of learner self-management.

Control does not translate into social independence or freedom from influence. Educational self-management concerns the use of learning materials within a context where there is an opportunity for sustained communication. Self-management of learning in an educational context must consider the opportunity to test and confirm understanding collaboratively. This is an important aspect of knowledge development. Issues of control must balance educational norms and standards (e.g., what counts as worthwhile knowledge) with student choice and the responsibility for constructing personal meaning. Participants must feel comfortable with the degree of perceived and negotiated control of learning tasks and activities. Thus, considerable importance is placed on communication capabilities and opportunities in determining the appropriate balance of control and degree of reamer self-management.

Increased learner control through self-management brings with it increased responsibilities, particularly with regard to the learning process itself and the construction of meaning. Perhaps the immediate benefit of increased self-management is increased awareness of the need to make learning more meaningful, that is, to take greater responsibility in the monitoring of the learning process itself. As will be argued, it is very difficult to get reamers to accept responsibility for meaningful learning outcomes when they have little control of, and input into, the learning process.

To this point, in describing the proposed model, we have identified the transactional or andragogical aspects of self-directed learning in adult education (e.g., the organization and implementation of the educational experience). The next two dimensions of the model—self-monitoring and motivation—represent the cognitive dimensions of self-directed learning. These recognize perceived cognitive abilities and the importance of learners assuming responsibility for monitoring their motivational and cognitive strategies.

Self-Monitoring

Self-monitoring addresses cognitive and metacognitive processes: monitoring the repertoire of learning strategies as well as an awareness of and an ability to think about our thinking (plan and modify thinking...
according to the learning task/goal. Self-monitoring is the process whereby the learner takes responsibility for the construction of personal meaning (i.e., integrating new ideas and concepts with previous knowledge). Responsibility for self-monitoring reflects a commitment and obligation to construct meaning through critical reflection and collaborative confirmation. To self-monitor the reaming process is to ensure that new and existing knowledge structures are integrated in a meaningful manner and learning goals are being met. It is central to assessing the quality of learning outcomes and to shaping strategies for further learning activities.

Self-monitoring is synonymous with responsibility to construct meaning. This may mean adding to and enriching existing knowledge structures or modifying and developing new knowledge. Responsibility in reaming is interpreted as a commitment to construct meaning by assimilating and accommodating new concepts with previous knowledge. To be responsible for one’s own learning necessitates a willingness and ability to self-monitor the learning process. Responsibility for self-monitoring, however, is not independent of contextual influences surrounding control of the educational transaction. Self-monitoring is dependent upon both internal and external feedback.

Internally, cognitive and metacognitive processes are involved with self-monitoring the construction of meaning. Cognitive ability is a core variable in self-directed learning. Learners will not succeed and persist in their learning without cognitive abilities and available strategies. The degree of self-direction will depend very much upon the learner’s proficiency (abilities and strategies) in conjunction with contextual and epistemological demands. Bandura (1986) suggests that there are three self-regulated learning processes: self-observation, self-judgement, and self-reaction. That is, during the learning process students self-monitor their progress by observing, judging, and reacting to their tasks and activities. Further investigation has revealed fourteen self-regulated learning strategies consistent with this and other research (Zimmerman, 1989). Other cognitive skills and strategies related to self-regulation are examined by Winne (1995).

Metacognitive proficiency is very much associated with the ability to be reflective and think critically. Reflective learning encourages the learner to relive the experience in order to “develop learners who are capable of monitoring themselves in a variety of situations” (Candy, Harri-Augustein, &Thomas, 1985, p. 115). Self-monitoring facilitates a metacognitive perspective on learning and a generalized ability to learn. Models of critical thinking not only help describe the metacognitive processes associated with self-directed learning, but can be of great assistance in helping students become metacognitively responsible for their learning (Garrison, 1992) For example, learners must understand whether the requirements of the task are to assess the state of current knowledge, search for additional information, explore new conceptualizations, or confirm new meaning through discourse or action. To assume cognitive responsibility is to self-monitor the reaming process, assess outcomes, and develop new strategies to achieve intended outcomes.

Internal feedback alone, however, may lack accuracy and explicitness (Butler & Winne, 1995). The possibility and value of incidental feedback from serendipitous experience in an educational setting notwithstanding, it is the teacher who can provide efficient and effective feedback for purposes of self-monitoring the quality (meaning and validity) of the learning outcome. The challenge is for the learner to integrate this external feedback with his or her own internal meaning assessment. To be aware of this internal and external input, and to use it to construct meaning and shape strategies is to self-monitor learning cognitively and metacognitively.

Self-monitoring is intimately linked to the external management of reaming tasks and activities. An interesting and important issue arises with regard to responsibility (self-monitoring) and control (self-management). The dilemma is whether responsibility must precede control or vice versa. Although theoretically they go hand in hand, it is very difficult for learners to assume responsibility for their own learning without feeling they have some control over the educational transaction. When the teacher controls goals and activities, students are placed in the position of being responsible for decisions made by the teacher. Without choice and collaboration, it may well be unrealistic to expect students to assume responsibility for their learning.

Unfortunately, the reality in many formal educational institutions is that control is concentrated in the hands of teachers and administrator. This is changing, however, with the increasing demand for lifelong learning.
(learning how to learn) and network learning (e.g., the Internet) opportunities. These trends toward meaningful and relevant learning goals are shifting the balance of control from teacher to learner.

While it is argued that perceived control should precede responsibility, absolute learner control may adversely affect or reduce the efficiency of achieving quality learning outcomes. There is evidence that collaborative control results in more effective self-monitoring and, therefore, improved performance (Butler & Winne, 1995). At the same time, self-directed learning tends to be fortuitously shaped by the environment—what Spear & Mocker (1984) call organizing circumstance. Sharing control of learning activities and tasks provides opportunities for instructional support while encouraging students to assume cognitive responsibility. Finally, it is possible that absolute learner control may reduce persistence—a point addressed below.

The inseparability of monitoring and managing the learning process is further complicated by motivational concerns. Motivation is a pivotal issue in self-directed learning. It has an enormous influence on learners assuming responsibility and control of the learning process. When considering motivational influences on learning, there is a need to include both a pre-implementation or planning phase and an implementation or action phase.

Motivation

Motivation plays a very significant role in the initiation and maintenance of effort toward learning and the achievement of cognitive goals. Our limited understanding of the link between motivation and cognition notwithstanding, "we do know quite enough to be certain that motivational factors have enormous practical influences on the kinds of cognitive activities that underlie human learning" (Howe, 1987, p. 145). Motivation reflects perceived value and anticipated success of learning goals at the time learning is initiated and mediates between context (control) and cognition (responsibility) during the learning process.

To begin to understand the pervasive influence of motivational factors, we need to distinguish between the process of deciding to participate (entering motivation) and the effort required to stay on task and persist (task motivation). Since entering motivation directly influences effort expended on learning tasks, it is important to appreciate how entering motivational states are established. Entering motivation establishes commitment to a particular goal and the intent to act.

Task motivation is the tendency to focus on and persist in learning activities and goals. As Corno (1989) suggests, "Motivational factors . . . shape intentions and fuel task involvement" (pp. 114-115).

The process of selecting goals and intentions and deciding to participate establishes the student's entering motivational state. In a sense, this is the motivational reserve or fuel which the student possesses when initiating a learning experience. Although much can happen to influence motivation during the learning process, effort and persistence will be greatly influenced by the entering motivational state. The theoretical challenge is to define the variables that influence the decisional process leading to a goal commitment. The decisional process to participate in a learning experience described here is based upon the work of Vroom (1964) and Pintrich (1989) and was influenced by Rubenson's expectancy–valence paradigm for recruitment (Garrison, 1990). The relevance of this theoretical framework arises not only from its extensive research base, but, more importantly, because of Rubenson's work on participation and recruitment in adult education and my own explication of the framework's decision-making process using the concept of control.

A student's entering motivational state results from rational intentions with regard to selecting learning goals. This is not to say that decisions are entirely free or voluntary (Stalker, 1993). As we shall see, contextual contingencies very much shape our choice of goals and decision to participate. Notwithstanding this caveat, establishing the entering motivational state is concerned with choosing goals. It is hypothesized that entering motivation is largely determined by valence and expectancy (Figure 2). Students will have a higher entering motivational state if they perceive that learning goals will meet their needs and are achievable. Entering motivation can be perceived as "commitment--the coming together of attitudes, feelings, and goals"
In a learning context, valence reflects the attraction to particular learning goals. The factors that determine valence are personal needs (values) and affective states (preferences). Personal need reflects the importance or worth of particular learning goals. Needs and values reflect the reasons for persisting in a learning task. Closely associated with needs are affective states. This set of variables is composed of attitudes toward self (e.g., self-esteem), task (e.g., anxiety), and goal preference.

Expectancy in a learning context refers to the belief that a desired outcome can be achieved. This factor is composed of personal and contextual characteristics that influence goal achievement. Personal characteristics (competency) reflect the perceived skills, ability and knowledge of the individual while assessing goals. Perceptions of ability or self-efficacy affect the decision to participate as well as the choice of goals and learning environments. Contextual characteristics (contingency) reflect perceived institutional resources or barriers as well as ideological and socioeconomic constraints. Together, competency and contingency assessments represent the mediating construct of “anticipated control.”

Anticipated control is an important perception when assessing expectancy of success and making decisions regarding goal-directed behavior. It is believed that control expectations “influence the direction of much of our behavior; they help to determine where we invest our achievement energies” (Weisz, 1983, p. 234). Anticipated control reflects the perceived ability and opportunity to exercise control over the learning process. If students are to have an expectation of control, they must have some choice over their educational goals. Providing opportunities for control and choice from the beginning can significantly strengthen the entering motivational state, which subsequently influences whether students will become self-directed and persist in their learning tasks.

Maintenance of intention during the learning process brings into focus the second motivational phase—tasks motivation. To direct and sustain motivation students must become active learners. Task motivation is integrally connected to task control and self-management. In addition, task motivation is conceived as being closely associated with the issue of volition. Volition is concerned with sustaining intentional effort or diligence, which influences persistence and task performance. In the “context of learning, volition refers to bringing discordant affective and executional preferences in line with one's task goals” (Kanfer, 1989, p. 381). Corno (1993) argues that volition is a key aptitude for educational success.

Its function is metamotivational in directing and sustaining effort toward learning goals. This metamotivational mechanism is necessary if learners are to assume responsibility for the achievement of desired educational outcomes, and represents a direct link to the self-monitoring dimension of self-directed learning. Moreover, in adult education, it has been shown that volition or persistence also reflects broader issues around the integration of educational and social (e.g., family) responsibilities (Garrison, 1987; Thompson, 1992).

Motivation to assume responsibility in learning is influenced by external conditions and internal states. While extrinsic motivation may well complement and enhance intrinsic motivation, externally imposed tasks and criteria can also reduce willingness to assume responsibility for learning. The challenge is to have students internalize external goals and rewards which are often more dominant during the entering stages of learning. To encourage intrinsically motivated learning, students must see opportunities to share control and to collaborate in the planning and implementation of the learning process. For example, students should be provided, at the very least, with an opportunity to understand why specific objectives are worthwhile, if not to select relevant objectives from among several options, shape approaches, and select appropriate learning tasks.

Intrinsic motivation is essential for meaningful and worthwhile learning, that is, achieving quality educational outcomes. Entwistle (1981) states that “interest and intrinsic motivation are likely to foster a deep approach, and an active search for personal meaning” (p. 259). Intrinsic motivation leads to responsible and continuous learning. If these are the worthy aims of education, it is imperative that we create conditions where students become increasingly motivated by authentic interest and desire to construct personal meaning and shared understanding (worthwhile knowledge). Understanding these conditions is, in essence, what the
exploration of self-directed learning is about. Authentic self-directed learning becomes self-reinforcing and intrinsically motivating.

Motivation and responsibility are reciprocally related and both are facilitated by collaborative control of the educational transaction. Issues of motivation, responsibility and control are central to a comprehensive concept of self-directed learning. Moreover, it is also suggested that self-direction may be the only approach to facilitate "deep" or meaningful learning outcomes. Learners are intrinsically motivated to assume responsibility for constructing meaning and understanding when they have some control over the reaming experience. In terms of long range educational goals, self-directed learning is also a necessity if students are to learn how to learn and become continuous learners.

Discussion

The self-directed learning model described here attempts to integrate contextual, cognitive, and motivational dimensions of the educational experience. The fundamental argument for understanding and facilitating self-direction is its potential to improve the quality of learning outcomes in the short and long terms.

Self-direction is contradictory to the transmission of the text from teacher to students without interpretation and construction of deep meaning. As seen here, self-directed learning is consistent with a collaborative constructivist view of learning that encourages students to approach learning in a deep and meaningful manner. Meaningful learning outcomes would be very difficult to achieve if students were not self-directed in their learning. Taking responsibility to construct personal meaning is the essence of self-directed learning. At the same time, taking responsibility for one's own learning does not mean making decisions in isolation. The challenge for teachers is to create the educational conditions that will facilitate self-direction. As Thomas and Harri-Augstein (1985) state, "If they do not negotiate a shared purpose, the learner and the teacher are each likely to draw different inferences about the learning that has, or has not, been achieved" (p. 309). Moreover, with shared purpose, there is a concomitant increase in entering motivation which is likely to sustain learning activities.

During the learning process consideration needs to be given to transactional (task control) issues and to sustaining motivation. Corno (1994) suggests that "effort is a function of person-situation interaction, and occurs when available external and internal resources combine" (p. 232). These resources include teachers and materials as well as the cognitive abilities and motivation of students. The challenge for teachers is to create the conditions where "mindful investment of effort" is realized by students. Through collaboration and control students learn to monitor and manage their thoughts and behavior. It appears that shared control leads to intrinsic motivation and then to responsibility. Much work remains to further our understanding of self-directed learning. A particular challenge is to explore in greater detail the cognitive and motivational dimensions. One line of research that may prove fruitful is to explore the links between self-direction and critical thinking. Critical thinking has been identified as an important area of study for adult education (Brookfield, 1990). Models of critical and reflective thinking have been proposed for the field (Brookfield, 1988; Garrison, 1991; Mezirow, 1990). These models serve two purposes. First, they provide a comprehensive perspective of the thinking-reaming cycle which can be used to help students metacognitively monitor their learning. Second, they can be used to identify specific cognitive strategies associated with various phases of the thinking-learning process.

To be a self-directed learner is to be a critical thinker. As Mezirow (1985) stated, "Becoming critically aware of what has been taken for granted about one's own reaming is the key to self-directedness" (p. 17). Brookfield (1985) also argued for the inclusion of critical and reflective thinking in his redefinition of self-directed learning: a "fully adult form of self-directed learning is evident when the techniques of self-direction [management] are married to a critical scrutiny [monitoring] of existing values, beliefs and social forms... involving an internal change of consciousness" (p. 63). Consistent with these views, the cognitive development literature may further enhance our understanding of the learning process. For example, King and Kitchener (1994) have provided empirical data supporting a developmental framework of critical and reflective thinking in ill-structured knowledge domains.
More specifically, some research directions would be: explore the theoretical connections between self-direction and critical thinking; map the relationship between responsibility (mentoring) and control (management) factors with regard to cognitive development; articulate specific strategies associated with management and monitoring issues; understand the influence of excessive workload, prescribed content and evaluation on self-direction and critical thinking; and, study the effect of mediated learning networks on self-direction and critical thinking. These are but a few possibilities among many worthwhile research initiatives.

Another area of research that may prove valuable in understanding the cognitive and motivational dimensions of self-directed learning is the literature on self-regulated learning. Self-regulated learning has emerged over the last two decades as a result of social learning research initiatives (Zimmerman, 1989). In contrast to self-directed learning, self-regulated learning emerged from research on self-efficacy (perceived proficiency) and motivation. The current emphasis of self-regulated learning on cognitive and motivation strategies (Winne, 1995) makes it a potential resource for the development of the psychological dimensions of self-directed learning. Furthermore, it has been argued that self-regulation has a beneficial effect on academic outcomes (Winne, 1995; Zimmerman & Bandura, 1994).

In conclusion, self-direction is seen as a necessary process for achieving worthwhile and meaningful educational outcomes. It is associated with initiating learning goals, maintaining intention, and striving for quality outcomes. Self-direction is seen as essential if students are to achieve Dewey’s (1916) ultimate educational goal of becoming continuous learners and possessing the capacity for further education and growth. Learning interest and opportunities for control promote self-direction and continued learning. Opportunities for self-directed learning, in turn, enhance metacognitive awareness and create the conditions where students learn how to learn. Adult educators interested in expanding their theoretical perspective and practice of facilitating learning might reflect upon the self-directed learning model proposed here.

DIAGRAM: Figure 1: Dimensions of Self-Directed Learning

DIAGRAM: Figure 2: Entering Motivational Factors

References

